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Abstract
Autonomously searching for hazardous radiation sources requires the ability of the aerial and

ground systems tounderstand the scene they are scouting. In this paper,wepresent systems, algo-

rithms, and experiments to perform radiation search using unmanned aerial vehicles (UAV) and

unmanned ground vehicles (UGV) by employing semantic scene segmentation. The aerial data are

used to identify radiological points of interest, generate an orthophoto along with a digital eleva-

tionmodel (DEM)of the scene, andperformsemantic segmentation to assign a category (e.g., road,

grass) to each pixel in the orthophoto.We perform semantic segmentation by training a model on

a dataset of images we collected and annotated, using the model to perform inference on images

of the test area unseen to the model, and then refining the results with the DEM to better reason

about category predictions at each pixel.We then use all of these outputs to plan a path for aUGV

carrying a LiDAR to map the environment and avoid obstacles not present during the flight, and

a radiation detector to collect more precise radiation measurements from the ground. Results of

the analysis for each scenario tested favorably.We also note that our approach is general and has

the potential to work for a variety of different sensing tasks.
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1 INTRODUCTION

Searches for illicit radiological or nuclear material, which would com-

prise a radiological dispersal device (RDD) or improvised nuclear

device (IND), arebecoming increasingly routine as commercial-off-the-

shelf (COTS) radiation detection equipment has become more widely

distributed among local, state, and federal law enforcement and emer-

gency response agencies. This increased capability comes at the cost

of the time and personnel that must be allocated to the radiation/nuke

search mission. Therefore, expediting the search process becomes

paramount. The search process in general consists of the detection of

anomalies, the localization of these anomalies, and the identification

of the sources of the anomalies (in this case radionuclides). Although

the radiation data collected in this work can readily provide an unam-

biguous radionuclide identification, automated spectroscopic identifi-

cation is not the subject of our research and has been well-studied

elsewhere.3,30 Instead, we focus on detecting the anomalies using

autonomous ground and aerial robots.

Autonomously searching for hazardous radiation sources provides

a safer approach to what is possible via manned surveys. It can also be

more efficient since a UAV is capable of autonomously scanning large

areas to collect radiation data. Furthermore, existingmaps for the area

of interestmay not be available or out-of-date. By taking images froma

UAV it is possible to generate an updated 3Dmap of the area.Machine

learning methods can be used to provide a semantic understanding of

the scene that can be used to plan a path for a UGV to reach radiolog-

ical points of interest. Once at the destination the UGV can then col-

lect additional radiation data, transmit video to operators at a remote

base station, and update the understanding of other unmanned sys-

tems simultaneously searching the area.

Performing this autonomous search in unknown environments is

a challenging task. In our approach to the problem we use a UAV

and UGV to carry out the search missions. We use a Yamaha RMAX

unmanned helicopter with an imaging system that takes 2D color

images synchronized with GPS, and a Sodium Iodide (NaI) radiation

detector, designed and built by SandiaNational Laboratories, to collect

gamma radiation spectral data. The imagery collected from the RMAX

is used to generate a 3D point cloud that can be processed into an

orthophoto and DEM. By performing semantic segmentation on these

data to assign each pixel in the orthophoto with a semantic category,
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more intelligent reasoning can be used to plan a path for a UGV to visit

the points of interest. The spectral data are analyzed to output these

points of interest where sources are possibly located.

While aerial scans are often capable of providing precise locations

of radiation sources with high confidence of a source being present,

this is not always the case. The scan lines in flight paths may not be

dense enough for precise location estimates. Also, these location esti-

mates may be at positions where no significant source of radiation

exists. We therefore use a UGV (the TURTLE), designed and built by

The Center for Dynamic Systems Modeling and Control (DySMAC) at

Virginia Tech, to visit the points of interest on the ground. The TUR-

TLE is equippedwith a LiDAR,which generates a 3Dpoint cloud tomap

the environment and detects and avoids obstacles while en route to

the estimated source location to collect additionalmeasurements from

a radiation detector mounted on-board. We do not perform an active

search of the area from the RMAX, which was done in Ref. 32, since we

consider the scenario where the UAV may be scanning a much larger

area, and relies on one ormore UGV tomore closely inspect the scene.

A lot of work has focused on the task of generating maps of an

area from aerial imagery. There are several ways to accomplish this

task. One approach is to perform image stitching, where images are

mosaicked together using feature matches to create a 2D image of

the scene. Each pixel in the resulting map can then be georegistered

if needed. While image stitching is fast and has many implementa-

tions available,2,9,41 this does not provide 3D information, which is

important to perform more accurate semantic segmentation and to

plan better paths for UGV. Stereo vision provides another solution

to this problem, where a calibrated two-camera imaging rig can be

used to generate fast local 3D reconstructions from pairs of images.

By reasoning about matching feature points in subsequent pairs

of images, these local 3D reconstructions can be transformed into

a global coordinate frame to create a full map of the area. There

are several publicly available implementations for simultaneous

localization and mapping (SLAM) from stereo vision,5,15,25 but these

implementations typically require high frame rates to work well. The

calibrated two-camera imaging rig that we use in our experiments

has two low-cost point-and-shoot cameras that are not capable of

high frame rates. While we are actively exploring ways of generating

high-quality 3D reconstructions from the stereo pairs collected from

our imaging rig, we use single-camera 3D reconstructions that are

georegistered to obtain the aerial maps used in our experiments.

Figure 1 shows an overview of our approach to the autonomous

search for sources of radiation. The end goal that we have in mind

is for our system to be able to autonomously identify the locations

of potentially hazardous radiation sources with UAV and UGV. The

UAV should be able to scan a large area to provide valuable context

to a UGV that can efficiently search the area and confirm the pres-

ence of sources at the estimated locations. Although not presented

in this work, future goals of this project include the ability of one or

more UGV searching the area from the ground to scan the other areas

in the scene to identify sources located at locations not identified by

the UAV. References to work focused on finding sources from aerial

data are provided in Section 2. The main contribution of this work

is a method to autonomously estimate and confirm the locations of

radiation sources with UAV and UGV applying scene understanding in

an unknown outdoor environment using aerial imagery with a super-

vised machine learning approach. We also incorporate aerial semantic

segmentation results into theA*pathplanning algorithmso that aUGV

will prefer to follow roads over grass and stay clear of obstacles. We

also demonstrate the ability to detect obstacles locally on the ground

with LiDAR and then find a path around the obstacle using both local

and global information.

2 RELATED WORK

Unmanned Systems Collaboration

The collaboration between autonomous unmanned systems has been

studied for a large number of applications. These unmanned systems

include autonomous underwater vehicles (AUV), unmanned surface

vehicles (USV), unmanned aerial vehicles (UAV), and unmanned ground

vehicles (UGV). Some examples of the applications of these unmanned

systems are search and rescue operations, post-disaster surveying,

F IGURE 1 Overview of our approach to the autonomous search for radiation sources in an unknown environment. The Yamaha RMAX is used
to autonomously search a large area for radiation activity by collecting gamma radiation data. By simultaneously collecting 2D color imagery, a 2D
orthophoto and DEM can be generated for the area, which are then used to perform semantic segmentation. Using all image data outputs, a path
can then be planned for a UGV, named the TURTLE, to collectmore precisemeasurements around the point of interest. Since objects that were not
present during the time of the flight may appear, LiDAR is used on-board the TURTLE to detect obstacles, which are then used to update a global
map and find an alternate route
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target localization and tracking, and precision agriculture monitor-

ing. Previous works have focused on the collaboration between multi-

ple UAV,18,34,51,72 multiple UGV,4,10,16,29,36 the collaboration between

UAVandUGV,12,19,31,52,66 andmuchmore.Garzon et al. present a solu-

tion for multiple UGV to perform signal searching tasks in large out-

door scenarios.24 They propose different path planning strategies for

coverage, which depend on the size and shape of the field. Careful con-

sideration of the aerial search patterns is important for extending our

work. Currently, we use equally spaced scan lines, where the distance

between the scan lines is based on the expected overlap to obtain a

high-quality 3D reconstruction of the environment.

For the topic of UAV-UGV collaboration, Tokekar et al. studied the

problem of coordinating UAV and UGV for precision agriculture,66

where they found energy-efficient ways to visit areas with misclassi-

fied nitrogen levels. UAV and UGV have also been used in a collabo-

rative manner to perform target localization.26,65 In Ref. 45 a mock-up

disaster scenariowas setup,where aUAVmaps the area and then com-

putes the fastestmission for aUGVto reach thedestinationanddeliver

a first-aid kit. Cooperative environment mapping40 and surveillance55

have also been studied. In our experiments, we are interested in sim-

ply reaching a destination and returning to the start position, but note

that our semantic segmentation results could be used to find better

paths to take for such tasks in outdoor environments.While our exper-

iments are fairly specific, and therefore difficult to compare to exist-

ing approaches, Schneider et al. discuss how EURATHLON and ELROB

have provided a way of standardizing and benchmarking the evalu-

ation of methods in outdoor robotics through competition.58 Teams

at these competitions build impressive systems that are capable of

executing missions in real-time for important tasks such as search

and rescue. Others have used overhead imagery to improve UGV

path planning capabilities. In Ref. 62, a self-supervised online learning

algorithm is used on a UGV to learn a model that integrates infor-

mation about the current terrain and overhead imagery that is then

used to predict traversal costs at other regions in the overhead map.

These predicted traversal costs were then used to perform path plan-

ning. While many of these works demonstrate successful collabora-

tion between UAV and UGV, we try to focus more on using semantic

segmentation for scene understanding in a real-world search task by

training on a dataset of imagery annotated with semantic categories.

As more images are captured and annotated by low-flying aircraft, we

believe it will be important to integrate existing models with online

learning algorithms, such as the one presented in Ref. 62. These mod-

els will be able to provide valuable context to a UGV during tasks such

as radiation search, as existing maps (e.g., satellite) may be too old to

capture important information about the scene.

Scene Understanding

Perception for autonomous robotic systems has seen tremendous

progress in many applications. A variety of possible sensing methods

(RGB-depth sensors, visual cameras, acoustic sensors, LiDARs, etc.)

have allowed these systems to perceive the world and make intelli-

gent decisions. Semantic segmentation has been the focus of many

works, with state-of-the-art models11,37 capable of achieving high

accuracy for many different tasks, and large datasets with semantic

annotations available for training and evaluation.21,61 However, to the

best of our knowledge, no publicly available dataset of semantically

annotated images from low-flying UAV currently exists. In this work,

we create our own dataset to train a model to perform semantic seg-

mentation with 2D color images and ground truth annotations, then

evaluate on unseen image tiles of the orthophoto for the area in which

we are searching for hazardous radiation sources.We believe that this

approach will extend to similar scenes with the same set of categories

present in the scenes. As aerial datasets grow, and as more images are

annotated, we will be able to take advantage of segmentation algo-

rithms such as DeepLab-CRF11 to more accurately segment a wide

variety of scenes.

Similar to this work, Montoya-Zegarra et al. explored road

mapping44 and the semantic segmentation of aerial images with

higher-order cliques.43 In our work we are more focused on segment-

ing images captured from low-flying UAV, the outputs of which need

to be used for planning UGV missions to search for sources of radia-

tion. Radford studied the problem of real-time roadway classification

from aerial imagery for UGV path planning,53 where k-means cluster-

ing and imagemosaickingwere used. This approach, however, relies on

an initialization step where the algorithm is first shown which cluster

is a road. Our approach uses supervised learning to perform semantic

segmentation of aerial imagery for several categories, which tends to

scale well and requires no human supervision at test time. Supervised

classification of LiDAR point clouds has also been studied.48,71 Joint

semantic segmentation of 2Dand3Ddata simultaneously has been the

focus of several other works. Floros et al. presented an approach to

performsemantic segmentationof 2D images and3Dpoint clouds gen-

erated from stereo pairswith a jointmodel that incorporated temporal

consistency between subsequent frames.22 Munoz et al. developed an

approach to jointly perform semantic segmentation of 2D images and

3D LiDAR point clouds by integrating information between overlap-

ping parts of the scene.46 In a work by Sturgess et al., structure from

motion features were incorporated into the semantic segmentation

of road scenes.64 While all of these works are relevant to our paper,

we do not focus too much on a framework to perform joint 2D+3D
semantic segmentation of the aerial data, which would require more

training data than we have available to us. We also do not focus on

performing better semantic segmentation of the scene from the UGV

data. However, we do note that these ideas are interesting directions

for future work. In our work, the LiDAR on the TURTLE is used to

detect obstacles on its current path by analyzing elevation gradients,

which we found sufficient for our task. For the semantic segmentation

of the orthophoto generated from the imagery captured by the RMAX,

we have a two-stage approach where we analyze the DEM separately

to make better category predictions at each pixel. Ideally, we would

implement a joint framework, such as the ones presented in,22,46 but

we do not have enough aerial data for this.

Yingze et al. presented an approach to generate image-based 3D

reconstructions while recovering the locations, poses, and categories

of objects in a scene.6 In a work by Kundu et al., an approach was pre-

sented for joint inference of 3D scene structure and semantic segmen-

tation of urban street scene imagery.33 Wewould requiremore data to

be able to use these types of approaches with the imagery collected
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by the RMAX, but note that this is also an interesting direction for

future work. In this paper, we find that the segmentation output by the

modelwe train is very acceptable for our given application. Incorporat-

ing semantic maps into path planning for mobile robots has also been

studied. Hatao et al. proposed a semantic map making system based

on road structures, where trajectories of moving objects, landmarks,

building entry points, and traffic signs are added to the map.28 They

combine laser range finders with an omnidirectional camera for per-

ception on the robot. In this work, we develop road structures as part

of the segmentation process for our orthophoto, which are used by the

UGV to plan global paths to the destinations with possible sources of

radiation.

Others have also studied optimal camera positions for UAV collect-

ing imagery to be used for image-based 3D reconstructions.39 While

this is ideal for generating a better orthophoto and DEM, navigating

to 3D positions not on scan lines with the same altitude increases the

amount of time to complete themission, andmakes analyzing the radi-

ation spectral data more difficult. We therefore use scan lines when

planning themissions for the RMAX.

Radiation Sensing

There has also been research on using UAV and UGV for radiation

mapping missions. Kochersberger et al. studied mapping radiation lev-

els in an unknown environment using a UAV to collect radiation data

from the air and deploy a tethered UGV to collect samples from the

ground.32 While similar to this work, their work focused on active radi-

ation search strategies with no focus on the planning for the teth-

ered UGV to reach the destination. In this paper, we present a full

system that performs an analysis of the radiation data after the UAV

lands, plans a path for a UGV to visit points of interest collecting addi-

tional radiation data while avoiding obstacles on the way to the des-

tination. We also use vision-based scene understanding to complete

the missions, which allows for low-cost cameras to be used. Vetter

et al. use an RMAX to map radiation and propose a “Nuclear Street

View.”68 Schneider et al. discuss possible scenarios for collecting radia-

tion measurements with unmanned systems,56 where one type of sce-

nario is the prevention of incidents involving radiation and the other

post-incident analysis. Our experiments focus on the prevention sce-

nario, where we perform a scan of a large area assuming all parts of

the scene are equally important. We simultaneously develop a seman-

tic understanding of the scene which helps us to plan a mission for a

UGV to then visit the areas of activity and potentially prevent a dis-

taster from occurring. Benedetto et al. developed an approach to iden-

tifying regions of interest in radiation data by means of clustering that

is driven by diffusion operators as applied to a data graph representa-

tion of the collection of radiation spectra.7 While more advanced rea-

soning could easily be incorporated into our search, such methods are

not necessary to demonstrate the successful automation of the pro-

cess of finding and localizing radiation anomalies. We find that the use

of a simple approach based on the local maxima in the overall intensity

(calculated as the sum of the counts in all spectral channels for each

measurement) to indicate potential source locations works well in our

experiments. The approachbyBenedetto et al.7 provided equal perfor-

mance to the use of max counts in our experiments, but we note that

for more complicated experimental setups, using such an approach

will become necessary. We instead focus more on augmenting seman-

tic information into the search process. In another work by Schneider

et al.,57 a prototype of an unmanned multi-robot reconnaissance sys-

tem to detect chemical, biological, radiological, nuclear, and explosive

(CBRNE) threats was presented, where the environment is not known

a priori. Chemical and biological samples are obtained from the envi-

ronment, and path planning is also performed so that trajectories can

be generated to avoid obstacles. In this work, we also avoid obstacles

identified from the UGV, but incorporate both global and local infor-

mation about the surrounding area to plan a path around them. The

orthophoto segmentation thatwegenerate alsoprovides valuable con-

text to the UGV mission to create an efficient initial path for the UGV

to visit the regions of interest.

Strategies for radiation searchhave also beenexplored. Cortez et al.

propose two different motion planning strategies for building a radia-

tion map.14 One involves searching areas with higher uncertainty lev-

els, and another involves visiting all cells in a grid where the amount

of time spent at each cell depends on the uncertainty. Minamoto et al.

estimate the intensities of radiation sources on the ground surface in

3D using a dosimeter.42 By moving the dosimeter around in 3D, they

performaMAPestimation of the source intensities by using character-

istics of attenuation. Towler et al. present a grid-based robust Bayesian

estimator to localize a single radiation source, and a contour analysis

technique to localize an arbitrary number of radioactive sources.67 All

of these experiments were completed using simulated data. Brewer

proposed a control strategy for a Yamaha RMAX unmanned helicopter

to search for radiation sources using particle swarm particle filtering.8

We believe that these approaches will become important in future

work, wheremore complicated source configurations are used inmore

complicated environments. Instead of planning a path to visit one

potential source location,wewill be able tooptimize apath to visitmul-

tiple locations, while performing active search along the way.

3 OVERVIEW OF THE METHOD

Our method to autonomously search for hazardous radiation sources

in an unknown outdoor environment uses a UAV (Yamaha RMAX) and

UGV (TURTLE) to collaboratively understand the scene. We perform

two separate missions in two separate adjacent areas of Kentland

Farm, Blacksburg, VA, where in the firstmissionwe set up a single radi-

ation source location, and in the second mission we set up two source

locations. The RMAX missions are planned by using sets of scan lines.

The goal of each mission is to find and confirm the existence and loca-

tions of anomalous radiation sources. In the first part of the mission,

the RMAX surveys the entire mission area to map the radiation levels

at a dense set of points. On a central base station the images and radi-

ation data captured by the RMAX are used to plan a follow-up search

from the ground using the TURTLE. The start positionswere arbitrarily

set to the edge of the map on one of the roads entering the scene. The

mission areas are shown in Fig. 2. The pink circles display the location

of where the radiation sources were placed.
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F IGURE 2 The two mission areas at Kentland Farm, Blacksburg, VA
where the experiments took place. The pink circles here display the
locations of where radiation sources were placed

The RMAX carries an imaging system to take 2D color images and a

radiation detector to collect gamma radiation data.We use the images

from both missions to create an orthophoto and DEM1 for the com-

bined flight areas to plan paths for the TURTLE, but treat the radiation

data separately for each mission. The orthophoto and DEM are used

to perform semantic segmentation. We train a segmentation model

on a dataset of images that we annotated with different categories

(road, grass, building, vehicle, vegetation, and shadow) at each pixel,

where the images in this dataset were taken from low-flying UAV in a

variety of environments. This semantic segmentation is used for plan-

ning paths for the TURTLE. The NaI radiation detector on-board the

RMAX is used to estimate locations of potential sources. The radia-

tion spectral data are output in the form of 1,024-d vectors, where the

sum of these vectors is called the counts. Stronger sources can typ-

ically be found by looking only at the counts, but for weak sources

located near stronger sources, more advanced reasoning is typically

required. In our experiments, we use the simpler approach of using

counts.We also note that themax counts value that is found is a global

maximum, meaning that only one source per scan be found with this

approach.

The spectral data that is output as 1,024-dimensional vectors are

synchronized with GPS to provide geospatial information about each

detector reading. The source locations in each mission are estimated

from the aerial data by the GPS position associated with themaximum

counts (sum of the 1,024-d vectors). To confirm that the radiological

points of interest from the aerial data actually contain a potentially

hazardous source of radiation, we use the estimated source locations

in the discrete set of aerial measurements as destinations for the TUR-

TLE to visit in each mission. For the TURTLE to visit these points, we

use theorthophoto,DEM, and segmentation to intelligently plan apath

that prefers roads and keeps a safe distance from obstacles. An RSI

F IGURE 3 The NaI radiation detector and imaging system mounted
to the RMAX during one of themissions

701 radiationdetector2 ismounted to theTURTLE to collect additional

measurements around the estimated location. Since the scene may

change between the end of the flight and the beginning of the ground

operation, the TURTLE is equipped with LiDAR to identify obstacles

and send coordinates bounding the obstacle to the global path planner

to find an alternate route to the destination. LiDAR scans are also used

to build a global map of the scene. Figure 1 provides an overview of the

aerial and ground operations to perform the search.

We provide details for each step of the method in the following

sections, which are organized as follows: Section 4 provides details

of the Yamaha RMAX, the TURTLE, and their hardware. Details of

the image-based sceneunderstanding, including the3Dreconstruction

and semantic segmentation of the aerial imagery, are presented in Sec-

tion 5. Section 6 discusses the path planning for the TURTLE to visit

points of interest and how the semantic segmentation is incorporated.

In Section 7 we present our experiments for both the RMAX and TUR-

TLE missions. Finally, our thoughts on the experiments and potential

future work are presented in Section 8.

4 UNMANNED SYSTEMS

In this section, we detail the unmanned systems used to complete all of

the experiments presented in this paper.

4.1 Unmanned aerial vehicle—yamaha RMAX

TheUAVused is a 2005YamahaRMAX (model: L17-2), an aircraft orig-

inally developed for crop dusting in Japan. The wePilot autopilot sys-

tem is used to interface with the flight control system and ground con-

trol allowing for autonomous operation. The RMAX has a 94 kg gross

weight, a max payload capacity of 28 kg, and flight endurance time of

approximately 45 minutes. The RMAX is shown in Fig. 3 during one of

themissions carrying the radiation detector and imaging system.
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F IGURE 4 Histograms (not normalized) of the counts from the NaI radiation detector mounted to the RMAX over a period of 10minutes for (a)
backgroundmeasurements and (b) with a radiation source (137Cs) present for calibration

Radiation Detector and Imaging Hardware

The radiation detector used to collect radiation spectral data is an NaI

scintillation-type detector with a 9 inch length and 3 inch diameter. In

order to understand themeasurements of the detector during themis-

sions,wefirst takebackgroundmeasurements andmeasurementswith

a 137Cs radiation source next to the detector for 10minutes each. His-

tograms for each case are shown in Fig. 4.

The imaging system mounted on the RMAX is a two-camera stereo

boom designed and built by the Unmanned Systems Lab at Vir-

ginia Tech.3 Two off-the-shelf Canon PowerShot A-810 cameras were

placed inside a carbon fiber tube resulting in a 1.38 m baseline. Exter-

nal power is provided to each camera, eliminating the need to remove

the cameras for battery replacement, whichwould require aligning the

cameras and performing a stereo calibration after each replacement.

In addition, SD cards are attached with extension cables that allow for

quick mounting and dismounting. In order to synchronize the trigger-

ing of the cameras, we use amicrocontroller that sends pulses over the

USB power line and the Stereo DataMaker firmware.63

4.2 Unmanned ground vehicle – TURTLE

DySMAC designed and built four identical UGV referred to as the Ter-

restrial Unmanned Robots for Teamed Learning and Exploration (TUR-

TLEs), one of which is used in our experiments. The control strategy

to navigate the waypoints from the global planner was developed in

Ref. 59. The base design of the TURTLE includes a differential drive

system, powered by two brushless motors located in the rear. Each

motor can runcontinually at speedsup to10mph (4.5m/s) andproduce

torque up to 322 in-lbs. These specifications, along with four wheel

independent suspension, allow for traversal over a wide variety of ter-

rains in both urban and rural environments. Moreover, the vehicle has

been tested with payloads up to 100 lbs, a feature which allows for the

deployment of the radiation detector and Velodyne HDL32-E LiDAR

mounted on-board.

The TURTLE contains an on-board computer, 5 GHz radio, and

GPS/INS system. The TURTLE’s computer has an i-7 Intel processor,

80 GB SSD, and 8 GB of RAM. This allows for full vehicle control

and sensor collection along with building a global DEM in real-time.

The radio establishes highbandwidth full inter-vehicle communication,

which can broadcast over several miles, facilitating wide scale imple-

mentation. This network can easily be augmented to include person-

nel communication as well. Using this network, processing can easily

be distributed on a need-be basis. Moreover, the network allows for

clear position knowledge fromevery other unit, strengthening the esti-

mate. The built in NovAtel SPAN-CPT GPS/INS system is rated up to a

position accuracy of 1 m. This, without SLAM, was enough to achieve

acceptable global LiDAR maps. The TURTLE used is shown in Fig. 5 at

the Kentland Farm test area. The computer runs Windows 7, where

LabVIEW is used for all control of the robot and processing of the

LiDAR data.

There are several reasons to send in a UGV for further inspection.

One reason is that the UAV may be performing a scan of a larger

area, where scan lines are not that dense. Having a UGV inspect the

scene can provide a more precise estimate of the location, as it can get

closer to the source. The UGV may also be able to visit areas that are

difficult for a UAV to reach. It is also possible to perform long-dwell

F IGURE 5 (a) The TURTLE at Kentland Farm, Blacksburg, VA where all experiments took place. (b) RSI 701 radiation detector mounted on the
back of the TURTLE
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F IGURE 6 Histograms (not normalized) of the counts from the RSI 701 radiation detector mounted to the TURTLE over a period of 10 minutes
for (a) backgroundmeasurements and (b) with a 137Cs radiation source present for calibration

measurements and to carry larger detectors with higher sensitivity on

the TURTLE than the RMAX, which allows for the collection of statisti-

cally better data and better localization.

Radiation Detector

The radiation detector is a 2x4x16 inch NaI(Tl) system, manufactured

by Radiation Solutions, Inc (RSI) that is shown mounted to the back of

the TURTLE in Fig. 5(b). Similar to the Sandia system the RSI detector

records second-by-secondgamma-ray spectra intoGPS-tagged, 1,024-

channel histograms that span an energy range of 0–3,000 keV.We per-

formed a calibration of the detector by taking background measure-

ments andmeasurements with a 137Cs radiation source placed next to

the detector for 10 minutes each. A histogram of the counts for each

case is shown in Fig. 6.

5 IMAGE-BASED SCENE UNDERSTANDING

This section shows how to use images captured by theRMAX to under-

stand the scene. This involves batch processing all of the images to gen-

erate an orthophoto and DEM. 2D features from the orthophoto and

2.5D features from the DEM are used to segment the data (i.e., label

each pixel with a category, such as grass). These data are also georeg-

istered, meaning that each pixel in the orthophoto and DEM represent

a GPS coordinate. This allows path planning to be performed for the

UGV by generating a path as a sequence of pixels that can be mapped

to GPS coordinates. The segmentation can also be used to understand

where obstacles are, and where preferred surfaces of traversal (e.g.,

road) are located, which is used during the path planning process.

Having a 3D reconstruction of the scene is necessary to be able to

reliablyperformsegmentationandplanapath for aUGV.Usingonly2D

information from the images to plan a path can fail when the segmen-

tation algorithm used confuses the traversable and non-traversable

categories it is segmenting. For our aerial operations we chose to

use 2D color cameras for perception, as they provide a reliable and

low-cost solution compared to LiDAR for generating 3D reconstruc-

tions. We were also able to complete all experiments using off-the

shelf Canon PowerShot cameras, for which there is no noticeable loss

of accuracy in the 3D reconstructions when compared to expensive

machine vision cameras previously tested over Kentland Farms in the

same flight area. The 2D color images were also proven to be useful

for performing semantic segmentation, especially when distinguishing

between categories with similar elevation patterns, such as grass and

roads.

5.1 3D reconstruction

We considered two different methods of image-based 3D reconstruc-

tions in this work. The first method is stereo vision, where 3D posi-

tions of pixels matched between the left and right images are calcu-

lated using a calibration of the imaging system. Advantages of this

approach include fast computation and the ability to track dynamic

parts of the scene in 3D. The second approach is using structure from

motion, where a 3D point cloud is generated by reasoning about pix-

els matched between two or more images. This results in a more accu-

rate 3D reconstruction than with stereo vision because the depth res-

olution is increased by viewing most of the points from more than

two camera positions. However, structure frommotion is usuallymuch

slower than stereo vision, as this now involves optimizing for the 3D

position of each point using the pixel positions from all images it is

visible within, and also optimizing for the camera positions. Dynamic

parts of the scene are also difficult to model with this approach, which

typically results in their absence from the final 3D reconstruction. An

advantage of structure from motion over stereo vision is that it tends

to create a more accurate orthophotos and DEM, which is useful for

applications such as path planning, which we explore in this paper.

When attempting to stitch local stereo reconstructions together, we

found the results much more noisy than what Agisoft1 output, which

were significantly cleaner and more accurate. This allows for better

obstacle detection,which is used to segment the scene.Anatural draw-

back of structure from motion, however, is the inherent scale ambigu-

ity associated with a monocular setup in the absence of GPS. In GPS-

denied areas it is better to use stereo vision, as it is capable of providing

3D reconstructions with known scale.

For structure from motion we tested two different implementa-

tions. The first implementation tested was VisualSFM,69,70 which we

combinedwith amulti-view stereo implementation, PMVS23 to gener-

ate a dense 3D reconstruction after initializing itself with the sparse

reconstruction output by VisualSFM. We also tested the professional

edition of Agisoft. Of the two, Agisoft provided superior results out-

of-the-box, and has the additional capability of generating orthopho-

tos and DEMs, which are more convenient inputs to path planning

algorithms.
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In this paper, we collected stereo images, but images from only one

camera were used to generate 3D reconstructions from SfM. In future

work, stereo vision could potentially be used for real-time reasoning

about possible radiation source locations.

We chose to use Agisoft in this work, which typically takes mul-

tiple days of computation to reconstruct an area similar in size of

Kentland Farm. The orthophoto and DEM used in our work help to

demonstrate the capabilities of our system. However, our approach

does not rely onAgisoft, and ourwork does not intend to improve upon

existing reconstruction methods. If more expensive machine vision

cameras are used than the point-and-shoot cameras used in our work,

then a real-time 3D reconstruction of the area can be generated using

existing code.15,20,47 If real-time3Dreconstructions areprovided, then

a real-time responsebyour systemwouldbepossible.However, for our

system to work the DEM should not contain too much noise, or eleva-

tion gradients will be identified that may cause the path planningmod-

ule to take an inefficient route to the destination. If a 3D point cloud

is being processed into a DEM for our system then filtering opera-

tions should be performed to remove noise (e.g., median filter). Smaller

objects that get removed during the noise removal process will still be

observed by the UGV, which will plan around them. Resolution of the

DEMandsemantic segmentationalsoplay an important role.We found

that if a pixel size of 0.6m on the ground to be appropriate for our pur-

poses. While larger DEMs and segmentations may help slightly, there

are diminishing returns on performance. Also, larger images require a

longer processing times, which may become intractable depending on

the size.

5.2 Aerial dataset and semantic segmentation

Some researchers performing segmentation of aerial imagery use

unsupervised approaches, where no training data are used to help

make predictions.38,53 These often fail due to assumptions of good ini-

tializations that subsequent segmentations rely on (e.g., operator label-

ing the road in the first image of a road-tracking UAV) and arbitrary

hand-crafted parameters (e.g., RGB thresholds for classification) that

do not extend to other scenes. For this reason, we decided to take a

supervised approach to the problem, where we train a segmentation

model to predict one of several semantic categories for each pixel in an

image. This approach requires no initializations of any kind, and is also

scalable, since no algorithmchanges are requiredwhen testing on adif-

ferent type of scene. In the case the approach does fail, then it is likely

that there is a simple need for more training data.

For the work presented in this paper, we annotated a collection of

images taken from low-flying UAV in a variety of environments with

several semantic categories to be able to train the segmentationmodel

that predicts these categories on the unseen test images of Kentland

Farms. The images were annotated using LabelMe.54 Figure 7 shows

an example annotation from our dataset and the legend for the colors

for each category. The full dataset consists of 230 annotated images,

where 54 come from tiles of the orthophoto for the Kentland Farms

flight, 119come fromanRMAXflight conductedby theUnmannedSys-

temsLabatVirginiaTech inFort IndiantownGap,PA, and57come from

avariety of flights taken from low-flyingUAV.However, for training,we

only use a subset of the119Fort IndiantownGap images toprevent the

model from overfitting to this scene. We use 15 images from this part

of the dataset, resulting in a total of 72 training images when testing

on the orthophoto of the Kentland Farms imagery. Ideally we would

collect a very large dataset with more semantic categories so that a

deep semantic segmentation model, such as DeepLab-CRF,11 could be

used. However, collecting such a dataset is difficult, since a diverse set

of images from low-flying UAV are not easy to find, and the annotation

procedure is extensive.

To perform semantic segmentation we use the Automatic Labeling

Environment (ALE),35 which trains a model using 2D images and anno-

tations and thenuses thatmodel to perform inference at the pixel-level

on images in a test set unseen to the model. The code uses 2D image

features to learn the likelihood of each pixel belonging to the differ-

ent set of categories. For inference, a graphical model is used that rea-

sons about these local likelihoods, each pixel’s similarity to its neigh-

boring pixels, and regions in the imagewithinwhich the pixel is located.

The traversable categories are road and grass, and the rest are the

non-traversable categories. While shadows often contain traversable

regions, we treat them as obstacles. It is possible to postpone anal-

ysis of those areas until a UGV enters the scene with LiDAR to ana-

lyze whether or not they are traversable, but we do not do this. We

identify obstacles in the DEM by calculating the gradient magnitude

and filling regions surrounded by larger gradients. Pixels within these

regions that contain traversable category labels are assigned themode

of the most likely non-traversable categories within the region using

F IGURE 7 We annotate 2D RGB images taken from low-flying UAVwith 6 different semantic categories that we use to train a model to predict
the categories for pixels of unseen test images
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F IGURE 8 Overview of our approach to performing semantic segmentation of the aerial imagery. We first train a segmentation model on a
dataset of images taken from low-flying UAV and their annotations. We then take the orthophoto and divide it into tiles so that each can be seg-
mented individually. These segmentations are then combined to make the 2D only segmentation result. To improve the segmentation results the
DEM is then used to make updates. Regions surrounded by larger gradients are identified after which any pixels within those regions classified as
traversable categories are assigned themode of themost likely non-traversable categories within those regions

the unaries computed by TextonBoost60 in the ALE framework. An

overview of our approach to performing semantic segmentation is

shown in Fig. 8.

We note that we make corrections to regions of the segmentation

where an obstacle has been detected and a traversable category has

been classified, but donotmake corrections to regionswherenoobsta-

cle has been detected. We do this for two reasons: (1) grass and road

are segmentedwith high precision, as evidenced by our results, and (2)

theremay be some obstacles that are not detected with the DEM.

6 PATH PLANNING

This section describes how the orthophoto, DEM, and segmentation

outputs of the image-understanding pipeline are used to plan paths for

a UGV in the scene. The path is originally generated as a sequence of

pixels in the orthophoto andDEM. The georegistration information for

the orthophoto is used to map these pixel coordinates to GPS coordi-

nates so that the UGV can navigate the path.

To plan a path for the UGV to visit points of interest on the ground

we consider first how to plan a path between two points given an

orthophoto, DEM, and segmentation. Our method of choice was A∗,27

which extends Dijkstra’s algorithm17 via a heuristic to assist in finding

the best path between the two points. The orthophoto, DEM, and seg-

mentation have the same image dimensions, and we therefore define

nodes of our graph to be the pixel positions with 8-pixel connectivity.

The size of the grid paths are calculated on is 458x440 (201,520 total

nodes), which translates to each pixel representing an area of approx-

imately 0.6m x 0.6m. Downsampled versions of the orthophoto, DEM,

and segmentation4 were used to make calculating the paths efficient

but still accurate. The cost function for A∗ search is defined as

f(n) = g(n) + h(n), (1)

where g(n) is the cost from theorigin node to the neighboring node (xn),

and h(n) is the heuristic that estimates the cost ofmoving from xc to the

goal node (xg).

Our implementation will find a path between two points in the

orthophoto using the semantic segmentation results, where there is a

F IGURE 9 This shows the power consumption for the motors of the
TURTLE when operating on pavement vs grass for different speed set-
tings. The power consumption measurements were calculated by tak-
ing the median value of all the peaks in the plot over time. Significantly
less power is consumed on pavement compared to grass

preference that the path chosen follows the roads. We experimented

with using the DEM in the cost function, but found it made little differ-

ence, possibly because obstacles are not added as traversable nodes in

the graph. However, for other scenes this cost can easily be included if

necessary. The motivation for following roads over grass is that grass

tends to be more difficult to traverse for UGV, as well as obstacles and

ditches being less visible. To provide further motivation for this design

choice, we show the power consumption of the motors when travers-

ing pavement and grass as a function of the percent speed set in Fig. 9.

The power consumption values were calculated by taking the median

value over all peaks in the plot over time as the UGV traversed both

grass and pavement surfaces. As seen, traversing grass always results

in a higher power consumption thanwhen traversing pavement.

We calculate the heuristic function h(xc) as the euclidean distance

in pixels to the goal position, and the cost of moving between xc and xn
as

g(n) = 𝐰⊺[𝜙1(xc);𝜙2(xn);𝜙3(xc)]. (2)

The specific weights we use are 𝐰 = [5; 2; 5]. Here we note that

prior to the experiments we used different weights, with regular (not
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F IGURE 10 An overview of our experiments at Kentland Farm, Blacksburg, VAwith our Yamaha RMAX (UAV) and TURTLE (UGV)

inverse) distances for𝜙1(xc) and 𝜙3(xc), and a value of 1 in𝜙2(xc)when
xn is classified as road and 0 otherwise.We inverted the formulation so

that negativeweightswere not used and observed very similar planned

paths to the ones presented in the paper. However, we have presented

the weights and features with the correct formulation. The reason the

planned paths may be similar are that they do not navigate around too

many obstacles to reach the destination, and are still being rewarded

for actions in a very similar way. The following describes each feature

𝜙i:

• 𝜙1(xc) is the inverse of the distance to the nearest xi not classified as
road,which is 0when the xc is not classified as road. This rewards the

algorithm for staying near the center of the road.

• 𝜙2(xn) is an indicator variable that is 1 when xn is not classified as

road and 0 otherwise. This encourages the algorithm to pick roads

over nodes classified as other categories.

• 𝜙3(xc) is the inverse distance to the nearest xi not classified as road
or grass, which is 0 when xc is not classified as grass. This helps the

path stay clear of obstacles in the scene.

The weights (w) used above are up to the system designer to pick

for their application. With our current weights, there is a preference

to follow roads over grass, but the algorithm does not minimize the

amount of time spent on grass. While we do not use weights based on

the values of Fig. 9, this couldbedonewithmoredata. This also extends

to an arbitrary category size if traversability data can be gathered for

each category.We did not use these costs in our experiments, because

the choice between grass and roadswere based on common sense rea-

soning that roads are better than grass. However, with other terrain

types thismight not be so clear, and so these types of plotsmay be very

useful. Power consumptionor other characteristics related todifferent

terrain types being classified could be directly incorporated into these

weights. These weights could also be actively modified as a UGV navi-

gates a particular scene learningmore about the environment.

TABLE 1 Information for each of the 4 radiation sources used in the
experiments. Different combinations of these sources are used when
creating each source location

Nuclide Half-life (yr) Activity (𝝁Ci)

137Cs 30.2 10.0

133Ba 10.7 16.1

166mHo 1200.0 138.7

166mHo 1200.0 147.1

7 EXPERIMENTS

Here we describe the experiments performed using our systems and

algorithms. These experiments are intended to simulate real-world

threats where potentially hazardous devices are located within an

unknown environment. The purpose is to allowmilitary or law enforce-

ment personnel to search for such devices without putting themselves

in danger. The area where these devices are locatedmay be very large,

and therefore having aUGV search the entire areamay not be feasible.

We therefore propose to have a UAV (Yamaha RMAX) search a larger

area from the air, detecting points of interest for a UGV (TURTLE) to

visit on the ground. An overview of our approach is shown in Fig. 10.

Wepresent two experiments in this section, where there is onemis-

sion for each partition of our larger test area at Kentland Farm, Blacks-

burg, VA. For eachmission area, we perform aflight and TURTLE run to

search for the radiation sources.

7.1 Experimental setup

Radiation Sources

The sources used in the experiments are listed in Table 1. Sources in

these activity ranges are typically used for system checks of labora-

tory equipment. As such they are relatively weak and sit roughly at the

thresholdofdetection for thedetector systemsused. The sourceswere

placed inNalgene bottles and positioned on top of thin steel stands 1m

off the ground for the aerial data collection and taped to the bottom of



CHRISTIE ET AL. 11

F IGURE 11 The Yamaha RMAX mid-flight during the first search
mission

the stands for the ground collection to ensure that there was no atten-

uation from the stand during the ground-basedmeasurements.

RMAXMissions

Two flights, using the RMAX, were conducted at Kentland Farms,

Blacksburg, VA, where different configurations of radiation sources

were placed in the scene for each flight. In Mission 1, all of the sources

listed in Table 1 were placed at a single location. In Mission 2, both Ho

sources were placed at one location, and the Ba and Cs sources were

placed at another location. Source locations in each mission are esti-

mated by the GPS locations associatedwith themaximum counts (sum

of the 1,024-d radiation signal from the detector).

For each flight, paths were generated in Mission Planner,50 with

an altitude of 30 m, and a distance between scan lines of 4 m, which

was chosen to ensure sufficient overlap in the imagery for generating

a high quality 3D reconstruction and also to obtain more dense mea-

surements for the radiation data. The height of 30 m allowed testing

of the detection system’s capabilities given the low activity level of the

sources with a significant background signature present. The velocity

of the RMAX was set to 3 m/s, and images were captured once a sec-

ond, resulting in around a 90% overlap for subsequent images. A total

of 1,644 images (874 for Mission 1 and 770 for Mission 2) were col-

lected for both missions, with 3,288 images if considering stereo pairs.

Image taking is also synchronized to simultaneously logGPS and radia-

tion data. The RMAX is seen flying one of themissions in Fig. 11.While

the altitude was chosen based on observations of the scene to ensure

there would be no hazard for the RMAX during the flight, this value

could be chosen using a 3D point cloud of the scene. If one is not avail-

able, then real-time sense-and-avoid methods could be applied.

Mission 1 lasted approximately 23 minutes, and Mission 2 lasted

approximately 26 minutes. This includes take off, landing, the naviga-

tion to and from the start/endwaypoints. Agisoft required several days

of computation, while segmentations were finished in a matter of sec-

onds per image. We performed the UGV missions at a later date than

the flights due to logistics. Moving forward we are exploring methods

to obtain 3D reconstructionsmuch faster by using stereo vision so that

this is not necessary.

The reason thatwe did not survey the entire area at once is because

(1) we wanted to conduct multiple missions, and (2) the endurance of

the RMAXmay not have been sufficient. The RMAX can fly for approx-

imately 45 minutes before needing to refuel. If endurance is needed,

then a fixed wing aircraft is better, but may move too quickly to collect

statistically meaningful data. There are higher endurance helicopters,

but they are much more expensive than the RMAX, which was within

our budget. Our requirement to be able to carry over 30 lbs of payload

also narrowed the helicopter selection.

TURTLEMissions

We ran two separate missions for each configuration of radiation

sources. The destinations are defined by the position of max counts

from the aerial radiation data. The same start position is set for both

missions, which is located on one of the roads at the exterior of the

scene. Since the scene may change between when the flights take

place and when the TURTLE is deployed, we placed an obstacle on the

planned path for the TURTLE in both missions so that it was forced

to detect the obstacle and then find a path around it by updating

the global map and planning an alternative route. The global map is

updatedby removing nodes in the2Dgrid containing the obstacle from

the set of traversable nodes.

7.2 RMAXResults.

Radiation Results

The position histories for each flight are shown in Fig. 12, where the

color of each point represents the counts value (from blue/low to

red/high). The ground truth locations of the sources are shown with

magenta circles, and the red diamonds show the positions of max

counts set as destinations for the TURTLE. In our results we are suc-

cessfully able to identify 2 of the 3 source locations of the combined

missions. The failure case is the Ba and Cs source combination, as

seen in Fig. 12(b) as the ground truth position farthest from the max

counts estimate. It was found to be too weak to be seen by differ-

ent nuclear anomaly detection algorithms at the altitude flown by the

RMAX (30m). The counts value at the closest readingwas 612, and the

median of the 10 closestmeasurementswas 617.5, both ofwhichwere

below the average counts for all of the aerial readings takenduring that

flight. For reference, the counts for the position closest to the other

source location (2 Ho sources) is 654, with a median for the closest 10

points of 658. Therefore the TURTLE is never instructed to visit any-

where near this position unless the starting point is set in such a way

that it passes right by it on the way to the location of the 2 Ho sources,

which is much stronger.

While our experiments proved what we set out to prove, the fail-

ure case does providemotivation forUGV-based searchmethods to be

applied. Theparticle filtermethodpresented for aerial search inRef. 32

is one example of an approach that could be applied for ground search

operations. Other approaches, such asmaximum-likelihood estimation

(MLE) and contour following,67 also have potential. This work is part of

a fundamental research project, so there are currently no specific end-

user requirements for the UAV-UGV teaming side of our work. Future
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F IGURE 12 The first (a) and second (b) flight paths at Kentland Farms, Blacksburg, VA, shown in Google Maps, where the color of each point
represents the counts, calculated by summing the 1,024-d spectral vector at each position. The magenta circles show the ground truth locations
of the sources, and the red diamonds show the positions of max counts, which are set as destinations for the UGV to visit and take additional
measurements

F IGURE 13 Histograms of the counts for eachmission (normalized), which includes themainmissionwith radiation sources and the background
scans. For each mission we ran t-tests between the counts for the background and source flights to verify that statistically significant differences
were observed. In both cases reject the null hypothesis, that their means are identical, with a p-value of 0.05

workmay include coming upwith performancemetrics to evaluate the

performance of more advanced radiation search tasks.

For each mission, we performed a background scan of the mission

area and a flight for the main mission with radiation sources present.

These background scans are never used to assist in finding the sources,

but help provide context for the data observed during the source

flights. For eachmissionwe ran paired t-tests between the background

and source flights for each mission to test the null hypothesis that the

counts (not normalized) have identical means. In both cases we were

able to reject this null hypothesis with a p-value of 0.05, and conclude

that statistically significant observations weremade during the source

flights. Histograms of the background and source flights for each mis-

sion are shown in Fig. 13.

Orthophoto andDEM

The orthophoto and DEMoutput by Agisoft are shown in Fig. 14. Note

that the DEM values are incorrect for the building with the white roof.

This does not affect path planning, however, as this area can still be

identified as non-traversable because of the discontinuity with sur-

rounding regions. Also, this provides further motivation for the 2D

semantic segmentation of the aerial images. A close up of vehicles is

shown in Fig. 15 to illustrate the level of detail in the final output by

Agisoft.

While GPS was used for all experiments presented in this paper,

the approach has the potential to work in GPS-denied areas, where

the mission is still feasible, but certainly more difficult. SfM and stereo

vision can still be used to generate a global map, but the individual

systems must now operate by transforming their local coordinates to

shared global coordinates. One example of how this might work would

be to have the UGV identify landmarks that can be matched to loca-

tions in the aerial map generated by the UAV, and then use these posi-

tions to align the two maps. Generating aerial maps (SfM, stereo, etc.)

without GPS can mean longer run times and less accurate reconstruc-

tions. For example, part of the SfM pipeline includes features being

matched between pairs of imageswhen generating the 3D reconstruc-

tion. A naive approach would search for matches in
(#images

2

)
pairs of

images. GPS can be used to only search for matches in pairs of images

located near one another. Without GPS, we can still limit the number

pairs to be searched by image clustering (e.g., clustering using GIST

image descriptors 49).While not as robust as usingGPS, and still result-

ing in pairs of images with no matches, this is still much faster than the

naive approach.
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F IGURE 14 The orthophoto andDEM generated by Agisoft

F IGURE 15 A view of the point cloud of Kentland Farm generated
using Agisoft that illustrates the level of detail possible using off-the-
shelf cameras

When dealing with uncertainty in the GPS measurements, algo-

rithms such as Kalman filters can be used with visual SLAM to update

position beliefs. One concern for our application is having an inac-

curate path be sent to the UGV. While this is not ideal, the UGV

would still be able to scan the terrain around it to determine what is

traversable and what is not. To correct the path, identifying landmarks

that are matched to the aerial map to make the correction would

be one possibility. Another possibility would be to have the UGV

perform semantic segmentation to make the correction. For example,

the GPS coordinates output for a path along a road may be located

on a neighboring grass region. Semantic segmentation would allow

the UGV to identify the location of the road nearby and make the

correction.

Another problem with using a single-camera system in GPS-denied

environments is the inherent scale ambiguity associated with struc-

ture frommotion.Our 2-camera imaging system can be used to resolve

this,13 by scaling the 3D reconstruction to an interpretable size using

the known baseline between the cameras. A UGV could then localize

itself in a local coordinate frame defined by the 3D reconstruction.

Semantic Segmentation and Path Planning

We perform semantic segmentation on tiles of the orthophoto using

ALE35 and then compare our results to ground truth annotations. Per-

category results are shown in Table 2. We measure results in terms of

precisionand recall,where for each category cprecision calculateshow

many of the instances classified as c are correct, while recall calculates

how many of the ground truth instances labeled c have been correctly

classified. True positives (TP), false positives (FP), and false negatives

(FN) are used to calculate precision and recall as

precision = TP
TP + FP

, recall = TP
TP + FN

. (3)

We show that our approach of reasoning about the 2D orthophoto

and DEM to output final predictions performs better than a baseline

that only reasons about the 2D orthophoto. The road and grass cat-

egories have very high accuracy, which is expected given that they

are usually visually distinguishable from the other categories and each

other. When confused with non-traversable categories, the DEM can

be used to make corrections. The reliability of the model to segment

these categories is also important for path planning, as these are the

traversable categories for the UGV. The confusion matrices for the

results of our approach and the baseline are shown in Fig. 16. Note

that the non-traversable categories are typically confused with one

another. This makes no difference for the path planner, but there is

still motivation to improve performance on these categories as this is

useful for high-level reasoning, such as understanding that a radiation

source is more or less likely to be present at certain coordinates (e.g.,

TABLE 2 Quantitative results for the semantic segmentation of the Kentland Farms imagery, showing per-category, average, and global accura-
cies for our approach (2D+DEM) that uses the orthophoto andDEM to reason about category prediction, and a 2D only baseline

Method/metric Road Grass Vehicle Building Vegetation Shadow Global Average

2D precision 87.75 99.04 35.89 89.56 63.43 85.82 - 76.92

2D+DEMprecision 97.70 99.08 40.23 91.86 63.66 87.37 - 79.98

2D recall 98.57 98.78 55.22 42.89 60.68 85.42 96.20 73.59

2D+DEM recall 98.41 98.74 61.96 97.85 62.29 81.06 97.89 83.39
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F IGURE 16 The confusion matrices for both our approach of using the orthophoto and DEM to perform semantic segmentation, and a 2D only
baseline that only uses the orthophoto. The diagonal elements of the confusion matrices show the precision values from Table 2. The different
colors in confusionmatrices represent values between 0 and 100

F IGURE 17 (a) Ground truth image of the orthophoto of Kentland Farms done with LabelMe.54 (b) Result of segmenting the orthophoto by
training the ALE35 on our dataset and then refining the results using the DEM. See the legend in Fig. 7 tomap colors to categories

inside a vehicle). The ground truth annotation and semantic segmenta-

tion result are shown in Fig. 17.

The planned missions are shown in Fig. 18, where the red pixels

display the path, the blue squares shows the locations of the obsta-

cles, and the yellow triangles show the start/end positions. As seen, the

planned path plans around the vehicles on the road that were present

during the flight, but not during the ground experiments. In our experi-

ments, we do not update the globalmap to remove obstacles thatwere

present in the aerial map, but are no longer in the scene. This was not

necessary for our experiments, but note that this could easily be incor-

porated by adding an additional process to analyze the LiDAR data.

7.3 TURTLE results

The global LiDAR maps (DEMs) generated for each mission5 by the

TURTLE are shown in Fig. 19. When multiple height values are

observed at the same (x, y) the values are averaged. This was done for

efficiency reasons, as storing all previous values so that the nth per-

centile can be calculated requires a significant amount more storage.

We also experimented with taking themax, but observed that this was

susceptible to noise.

Obstacle Detection and Avoidance. Local LiDAR scans were

analyzed to find obstacles on or near the current path, and were

used to update the global DEM and segmentation. Specific pixels

associated with the obstacle are set in the segmentation, the region

of which is dilated as a cautionary measure to make sure the full size

of the obstacle is contained within the region that defines it in the

segmentation. An updated path is then generated using the same path

planning algorithm by taking the current position of the TURTLE as

the start position, using the same goal position, and using the updated

segmentation. The final paths taken by the TURTLE, with obstacles

avoided, are shown in Fig. 20. As seen, at each position in the path

history the countsweremapped to a color value to represent intensity.

The difference from Fig. 18 can be seen where it has identified the

obstacle and navigated around it. To return to the start position,

we simply keep track of the waypoints visited on the way to the

destination and then follow them back.

Aswe approach the source in eachmission, we observe a significant

increase in the counts, thereby confirming that a source is present. A

plot of the counts over time for eachmission can be seen in Fig. 21. The

distance to the goal for each mission is also shown to help understand

the trends of the counts, see when the TURTLE is stationary, etc. For



CHRISTIE ET AL. 15

F IGURE 18 The planned paths for each of the two radiation source configurations. The start position (yellow triangles) was set on the exterior
points on the orthophoto containing a road. The blue square shows the positionwhere an obstacle was placed so the TURTLEwas forced to find an
alternative path when encountered. These paths were each generated in amatter of seconds

F IGURE 19 Global DEMs generated by the TURTLE’s LiDAR for each search mission. During the construction of the DEM, height values were
averaged for points with the same (x, y)

F IGURE 20 Paths taken for the missions of both source configurations where the counts were used to map to the colors seen at each waypoint.
Themagenta circles show the ground truth locations of the two source positions, the red diamond shows the position ofmax counts from the aerial
data, and the blue square shows the position of where the obstacle was placed. As seen in both missions, the TURTLE avoids the obstacles, which
was done by reasoning with both local and global information
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F IGURE 21 Plots of the counts over time for both radiation source configurations. The distance to the goal position is also plotted to help under-
stand the trends in the counts. Upon arriving at the destination, the TURTLE performed a long-dwell measurement by remaining in place for a few
minutes before returning to the start position, which explains the longer period with increased counts. The spike in (a) is believed to be a result of
the TURTLE turning around to return home, during which the direction of the detector changed causing it to pick up amuch stronger signal

the counts of Mission 1, shown in Fig. 21(a), we see a gradual increase

as the TURTLE moves closer to the source before remaining in place

for several minutes. The spike in the counts, observed by a single data

point, was attributed to the change in the direction when the TURTLE

turned around to return to the start position, resulting in a stronger

signal to be seen by the radiation detector. By looking at Fig. 21(a), the

spike occurs right at the time the TURTLE ends the dwell period and

begins to return to the start position. ForMission 2, shown in Fig. 21(b),

we see a sudden increase in the counts as it reaches the destination

before performing the long-dwell measurement. The source location

visited in Mission 2 is not as strong as the location of Mission 1, and

therefore we do not see the gradual increase seen inMission 1. In both

cases, however, the presence of a radiation source near both locations

of max counts from the aerial measurements was clearly confirmed

by the TURTLE. In practical applications, images and video could be

transmitted back to a remote base station where operators could take

control of the TURTLE to perform additional tasks.

8 CONCLUSIONS

We presented an approach to the autonomous search for hazardous

radiation sources in anunknownenvironment.We testedour approach

in a 7 acre area containing buildings, roads, grass, vegetation, etc. To

collect radiation data, elevation information, and a semantic under-

standing of the entire area, we used a UAV (the Yamaha RMAX) to fly

over the area and collect gamma radiation data and 2D color images

from off-the-shelf cameras. The radiation data were used to output

positions of the strongest reading from the detector as a destination

for a UGV (the TURTLE) to visit and collect more data. The imagery

was used to create a georeferenced orthophoto andDEMof the scene,

which were then used to perform semantic segmentation (i.e., assign

a category label to each pixel in the orthophoto/DEM) with high accu-

racy. By using the DEM to reason about category predictions we were

able to achieve significant improvements over the 2D only baseline

(orthophoto only). These image-based outputs were then used to plan

a path for the TURTLE to visit the points of interest from the radiation

data, where costs of the path planning algorithm were dependent on

the semantic segmentation. This resulted in a preference for the TUR-

TLE to follow roads over grass.

After planning the paths, we deployed the TURTLE to run the two

missions, where we place obstacles on each path so that it was forced

to identify the obstacle and find an alternative route. The algorithms

were successfully able to identify the obstacles, update the globalmap,

and plan a new path around the obstacles to each destination.We also

observed significant increases in the counts (sum of the 1,024-d vec-

tor from the radiation detector) as the TURTLE approached the desti-

nation in each mission, confirming that sources were present in both

cases.We demonstrated success for both the aerial and ground opera-

tions in our experiments to estimate andvalidate radiation source loca-

tions in an unknown environment. This demonstrated the importance

of having theUAVandUGVcollaborate to locate the radiation sources.

Ifweuse theRMAXalone in the searcheffort leaves a lot of uncertainty

about the presence of radiation sources. If only the TURTLE is used,

then it would have to search the entire area while actively learning the

terrain as it drives around. In futurework, we plan to test our approach

of using image-based reasoning to perform more complicated search

tasks inmore challenging scenes. Also, although our experiments focus

on the task of autonomously searching for radiation sources, we note

that this approach can be applied tomany sensing taskswith the possi-

bility of multiple aerial and ground vehicles driving the search effort.

We believe that with real-time 3D reconstructions from imagery, a

real-time response with our system is possible. With more expensive

machine vision cameras we believe we could have used existing recon-

struction software to accomplish this. However, we note that we dras-

tically reduce the price of the system with our 2 off-the-shelf Canon

A810 cameras, which were triggered by an Arduino microcontroller.

For future work, we are currently developing our own code to perform

faster 3D reconstructions from images taken from our stereo setup

with the Canon cameras by taking advantage of the known extrinsics

of the imaging rig. We believe that this will help close the gap between

cost andefficiency.Wealso believe that the annotateddatasetweused

to train the semantic segmentationmodel does generalize tomany sim-

ilar types of scenes, and have observed this by performing a qualita-

tive evaluation on other test areas that we have not yet annotated to

measure full performance. Asmore data are annotatedwith additional

categories, and as models start to make better predictions, we believe

that a systemsimilar to theonepresented in thisworkwill becomevery

useful for many types of disaster response scenarios.

Overall the experimental results that we obtained were favorable.

We did learn the importance of active search from the ground. In one
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of our experiments we unexpectedly failed to identify the location of

the second radiation source from an altitude of 30 m both by man-

ual inspection of the counts, and with highly capable radiation detec-

tion algorithms that analyze all dimensions of the radiation data com-

ing from the detector.7 We therefore used the max counts as the esti-

mated position of the source in each experiment. In future work, we

plan to expand the search from the ground to better detect these

weaker sources.We still believe that our semanticmaps of the area can

assist in this process. For example, if we know the locations of build-

ings and vehicles, then the UGV can be tasked to visit these places

and attempt to enter them to collect data not observed by the UAV.

We may also be able to learn radiation background signatures for dif-

ferent semantic categories and use that to make more informed deci-

sions about the presence or absence of a radiation source at a particu-

lar location.
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ENDNOTES
1 The orthophoto and DEM are the same size, and when overlaid on one

another represent the same part of the scene at each pixel.

2 The RSI 701 is a different radiation detector to the NaI radiation detector

mounted on the RMAX.

3 Although we use a two-camera system, the orthophoto and DEM used in

our experiments were generated from images from only one of the cam-

eras.

4 The original dimensions for each of these outputs was 18,137x17,454.

5 These can be used in post processing to help understand the scene around

the area of radiation activity.
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